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SUMMARY: 
In wind disasters caused by typhoons, restoration of houses delays due to the inability to secure the necessary 
construction materials and human resources for repairs have become a problem. For the purpose to overcome this 
challenge, we propose a method for repair demand estimation, which is facilitated to quickly estimate the demand 
after a wind disaster and to disseminate the information on the situation in the affected areas; thereby, to reduce the 
mismatch between supply and demand. In the proposed method, deep learning techniques were employed to analyse 
images taken soon after a disaster with aerial photographs and their processed data to identify the location and extent 
of roof damage for each type of roofing material. Although the accuracies of the image analyses have rooms to improve 
and the performance of the method is still to be examined, the paper demonstrates on how to estimate the repair 
demand for an actual case of Typhoon Faxai in 2019. 
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1. INTRODUCTION 
Delays in restoration due to the inability to secure the necessary building materials and human 
resources for repair works have often become a problem after wind disaster caused by typhoon. 
Information collected by municipalities after disasters usually does not include detailed 
information on damaged building components and their extents as well as types of building 
materials. Therefore, with such information it is difficult to estimate the amount of building 
materials and human resources required for repairs works.  
 
A method that facilitates a rapid estimation of repair demand in terms of building materials and 
human resources is useful to reduce the mismatch between supply and demand by disseminating 
information on demand outside affected areas; hence, minimize the delays in restoration. 
Authors have accumulated data on damage to residential houses through surveys after typhoon 
Jebi in 2018 and typhoon Faxai in 2019, which include data on repair works as well as satellite 
images, aerial photos taken by airplanes and UAV’s before and/or after the typhoons. In this paper, 
a method on rapid repair demand estimation is developed and their usefulness is investigated using 
those accumulated data, with focus on repair of damaged roof, which is the dominating damage 



type in wind disasters in Japan. The developed method is applied to the cases of residential house 
damages after typhoon Faxai in 2019 in order to investigate the applicability of the developed 
method. 
 
2. METHOD ON ROOF REPAIR DEMAND ESTIMATION  
The flow of roof repair demand estimation is shown in Figure 1. First, a point cloud and an ortho 
image are generated based on aerial photos taken from UAV’s and/or airplanes before disaster. 
Second, using the generated point cloud and the ortho images, footprints, roof shapes and roof 
materials of residential houses are specified. Once a disaster occurs, aerial photos are taken or 
satellite images are collected, which are then utilized to identify the locations/extent of damage to 
roof of each target house located in areas in concern. Then, by supposing the building information 
such as footprint, roof shape and roof material with the identified locations/extent of roof damage, 
the types and the amount of building materials and the amount of human resource required for 
repair work is estimated. Here, the data on actual repair work obtained for the damage due to 
typhoon Jebi in 2018 is utilized in order to estimate human resource based on the identified 
locations/extent of roof damage. 
 

 
Figure 1. Flowchart for estimating roof repair demand. 

 
 
3. CASE STUDY OF REPAIR DEMAND ESTIMATION IN AFFFECTED AREA BY 
TYPHOON FAXAI 
 
3.1. Building information collected before disaster 
Two deep learning models are developed; one is for identifying building footprint, and the other 
is for identifying roof material type. In order to develop these models, ortho images that are 
generated based on aerial photos are utilized. The deep learning model to identify the footprints of 
individual buildings utilizes aerial photo taken by airplane and its detail is presented in Xu et al. 
(2022). The deep learning model to identify the roof material type adopts FasterRCNN. For 
training, aerial photos taken by an UAV in an area T in Chiba prefecture, Japan are utilized. The 
training data consists of 526 building roofs, each of which has a label for roof material type; clay 
tile, slate, metal, concrete and solar panel. The numbers of samples of respective roof material 
types as well as the precision score are listed in Table 1. Out of the total numbers, 90% of them 
are utilized for training and 10% of them are utilized for verification. “Clay tile”, whose sample 
number is larger, shows higher precision score, whereas “concrete”, whose sample number is 
smaller, shows lower precision score. However, the latter will be improved by training with a 



larger number of samples; else, other deep learning model may result in better precisions. This call 
for further investigation. 

 
These deep learning models are applied to ortho images in order to identify building footprint and 
roof material type. The example is shown in Figure 2. Figure 2a is an ortho image generated with 
aerial photos taken by an UAV in area K. Figure 2b is the identified building footprint. Figure 2c 
is the identified roof material type. The precision scores generally decrease relative to those scores 
for area T; however, the scores are still acceptable levels in practical applications. 
 
Table 1. Number of roofing material and the precision score of deep learning. 

Roof material Number of samples Precision Score 
Tile 199 0.84 
Slate 132 0.75 
Metal 156 0.61 
Concrete 16 0.55 
Solar panel 23 0.25 

 
3.2. Identified damage locations and extent  
The damaged roof location and extent were identified by the abovementioned trained deep learning 
model. Figure 3 shows the results of the identification of the damage locations and extent, where 
the blue tarps, which cover the roof after the disaster as first aid, are utilized as roof damage proxy. 
According to Xu et al. (2022). the accuracy of blue tarps detection is about 90%; however, the 
blue roof tiles were sometimes incorrectly detected. The model is required to improve in this regard.  

 

   
a. ortho image   b. building footprints   c. roof material 

Figure 2. Ortho image, building footprint, and roofing material             Figure 3. Example of damaged roof  

            detected of Area K.                                                          detection in area K. 
 
 

 
Figure 4. The relationship between the area of roof and the human resources required for repair. 



3.3. Human resources required for repair works 
The relationship between the area of roof and the human resources required for repair is estimated 
from the data collected by a local government, which was affected by typhoon Jebi in 2018. Figure 
4 shows the estimated relationship. Around 3.0 man-day is required for repair with areas of less 
than 3 m2; however, for extended roof damages, the man-day increases in proportion to the area. 
 
3.4. Example of estimation of roofing materials and human resources required for repairs 
An example is shown in order to demonstrate how the developed method can be applied in practice. 
For this purpose, a subarea in area K, which was affected by typhoon Faxai in 2019, is considered. 
Using the ortho images in the corresponding subarea, 894 buildings are extracted. Among them, 
the roof material types of 790 buildings are estimated. Out of 790 buildings, 128 buildings received 
damages to roofs. The damage ratio in this subarea is then 16% (=128/790). The frequency 
distributions of damage area for respective types of roof material are summarized in Table 2. The 
total area of damaged roof for each roof material type and estimated human resource for repair 
work are estimated and summarized also in Table 2.  
 
Table 2. Estimates of affected area per roofing material and worker required for repair. 

Roof material Tile Slate Metal 
Damage area 

   

3m2 or less 5 7 3 
3-10 m2 14 7 4 
10-30 m2 9 23 7 
30-50 m2 13 10 3 
50-80 m2 12 2 1 
80-100 m2 0 2 1 
More than 100 m2 2 0 2 

Total damaged area 1,695m2  1,227 m2 791 m2 

Needed workers for repair 994.6   742.4 459.2 

 
 
4. CONCLUSIONS 
We proposed a method for rapid estimation of repair demand for residential roofs damaged by 
strong winds using remote sensing images and machine learning techniques. The proposed method 
is applied to an actual case and is successfully illustrated on how it works. The performance of the 
deep learning model to identify roofing material type and damage locations and extent have rooms 
to improve. The evaluation of the performance of the proposed method in terms of precision of the 
demand estimation is addressed as a future task. 
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